ternyata ada caranya looh biar ngga pegal saat pakai high heels..baca yukss........

Salah satu faktor penting yang sangat menunjang dalam penampilan adalah sepatu, salah satu sepatu yang kerap dikaitkan dengan feminimnya wanita adalah sepatu hak tinggi atau high heels. Nah bagaimana cara penggunaan high heels yang benar? Yuk simak yang berikut ini..
Bagi sebagian besar kaum wanita model sepatu yang satu ini bagaikan must have item. Soal modelnya, itu masalah selera saja. Model yang paling umum adalah stiletto yang runcing, sabrina, block, blade,dan lain-lain. Mau yang berdesain terbuka atau tertutup, sling back, point-toe, atau round toe semuanya hanya soal pilihan belaka.
Mau dipakai ke kantor maupun melengkapi black dress untuk menghadiri sebuah pesta di malam hari, kesan yang ditimbulkan tetap sama : seksi dan memikat.
Mengapa kesan itu dapat seketika muncul bagi wanita yang memakai high heels? Sebab sepatu ini akan membuat pemakainya harus berdiri dengan tegak sehingga terlihat lebih langsing, dan posisi ini akan membuat dada dan pantat lebih menonjol serta betis yang yang jenjang. Selain itu postur tubuh akan terlihat lebih ramping dan tinggi dengan mengenakan sepatu hak tinggi. So, jangan heran jika rasa percaya diri pemakainya juga langsung makin tebal.
Namun di balik kelebihan itu, ada pula resiko yang mengintip. Memakai sepatu hak tinggi akan membuat tumit bekerja lebih keras untuk menyangga berat badan tubuh. Apalagi berat badan akan lebih condong ke depan. Rasa pegal sampai kesemutan bisa menghampiri tumit jika sudah begini. Hal ini dapat membuat lelah tulang rawan yang merupakan faktor pendukung penyakit osteoarthritis.
Penggemar sepatu hak tinggi tentu tak asing juga dengan betis yang menjadi menjadi agak pegal setelah memakainya berjam-jam. Ini disebabkan otot betis dikondisikan menopang berat tubuh dengan lebih intens.
Selain itu tumpuan pada jari kaki berpotensi pula menimbulkan rasa sakit. Apalagi pada model high heels yang ujungnya meruncing. Model ini akan menyebabkan jari-jari kaki saling berdempetan dan bisa menyebabkan kuku jari kaki masuk ke bagian dalam alias hammertoe. Sering pula dijumpai terjadi pembengkakan ibu jari dan penebalan kulit pada jari (kapalan).
Well, no pain no gain. Untuk mengurangi efek negatif sepatu berhak tinggi ini kalangan kedokteran menyarankan jangan memakainya selama 12 jam terus menerus.
Artinya, beri kesempatan kaki Anda beristirahat dengan jeda sejenak melepaskan high heels. Apabila terpaksa maka tambahkan bantalan di telapak kaki.
Salah satu saran paling baik jika Anda memang suka memakai hak tinggi adalah jangan merasa sayang membeli sepatu yang berharga mahal. Soalnya biasanya sepatu ini lebih bagus kualitas buatannya dan lebih enak bila dipakai. Pilih yang warnanya netral, model semi klasik, dan benar-benar pas di kaki.
Cermati pula mutu taps atau heels protectors. Pasalnya kualitas yang pas-pasan akan mendatangkan resiko saat mengenakan sepatu hak tinggi. Tidak lucu kan bila langkah menjadi terseok-seok gara-gara taps yang terlepas di tengah jalan. Ingat, Anda akan memakainya untuk waktu yang tak sebentar jadi jangan merasa sayang membeli sepatu yang benar-benar bermutu.
Nah, agar benar-benar merasa nyaman memakai high heels, tidak ada salahnya melatih dulu cara yang benar memakainya agar penampilan Anda semakin prima. Langkah yang paling mudah adalah dengan melatih berdiri dengan stabil saat memakai sepatu hak tinggi.
Pakai sepatu Anda dan berdirilah di depan cermin yang bisa memperlihatkan postur secara keseluruhan. Berdirilah dalam posisi diam sekitar 30 detik, lalu putar tubuh ke segala arah. Selain bisa mengetahui siluet tubuh dari berbagai arah, langkah ini juga akan membuat Anda bisa menemukan posisi kaki yang paling nyaman.
Setelah itu cobalah berjalan beberapa langkah dengan irama yang biasanya Anda berjalan. Biasakanlah diri dengan berjalan di lantai dan juga karpet yang tipis maupun tebal. Jaga tubuh agar tetap tegak.
Kaki harus tetap lurus dan usahakan jangan melangkah terlalu lebar. Langkahkan kaki ke depan dan belakang beberapa meter. Untuk awalnya jalanlah dengan perlahan dan lalu tingkatkan kecepatan kaki.
Tentu, tak usah berlari karena sepatu ini tidak didesain untuk digunakan untuk berlari. Biasakanlah diri dan temukan ritme yang paling nyaman buat Anda. Hal ini berperan sangat besar dalam membentuk rasa percaya diri ketika berjalan dengan sepatu hak tinggi.
Namun latihan sesungguhnya bukanlah di depan kaca melainkan di jalan. Jika Anda memang memutuskan untuk sering memakai sepatu hak tinggi maka tantangan di jalan akan beragam. Berjalan di lantai marmer dan di trotoar tentu tidak akan sama. Latihlah terus dan mulai dari irama yang tidak terlalu cepat.
Menaiki tangga bisa jadi tantangan berikutnya. Jangan pernah tergesa-gesa naik tangga saat memakai hak tinggi. Selalu berpegangan pada pegangan anak tangga, atau jika tidak ada usahakan selalu dekat dengan tembok. Tapak anak tangga dengan lembut satu persatu. Melangkah dua anak tangga sekaligus makin memperbesar resiko terpeleset. Just one step at the time.
Lalu apakah high heels bisa dikenakan untuk clubbing? Tentu saja. Bahkan penampilan Anda malah bisa merebut perhatian di sana. Namun jika belum benar-benar ahli dengan hak tinggi, jangan mencoba untuk turun ke lantai dansa dengan iringan musik cepat atau menghentak. Hanya John Travolta yang berani berdisko sambil memakai sepatu hak tinggi (itu pun tidak terlalu tinggi) dalam film Saturday Night Fever.
Jadi jika ada kesempatan mengganti sepatu dengan hak yang lebih rendah sebelum clubbing, sebaiknya kesempatan ini jangan disia-siakan. Tentu Anda tak ingin pulang clubbing sambil dibopong teman sambil meringis kesakitan gara-gara pergelangan kaki keseleo bukan?

Gausah minder kalau bau mulutnya saat puasa, ada tipsnya kok buat ngurangin..baca yesss..

Di bulan ramadhan, saatnya umat muslim berpuasa sebulan penuh. Saat itulah, banyak orang yang harus selalu menjaga agar bau mulut bisa tetap baik baunya. Saat berpuasa memang kebanyakan orang tidak menyadari bahwa bau mulut mereka terasa tidak nyaman, dan tentunya akan menggangu orang di sekitar kita.

Walaupun berpuasa, ada banyak cara yang bisa sahabat klik cara lakukan agar mulut dan bau mulut tetap segar terhindar dari bakteri jahat. Oleh karena itu anda sebaiknya menjaga mulut anda agar tetap wangi dengan cara di bawah ini.

Lustrasi Wanita Mengalami Bau Mulut
Berikut cara mengatasi bau mulut saat berpuasa

1. Minum air putih sebanyak 8-10 gelas selama kita berbuka dan saat sahur,sehingga bau mulut dapat dinetralisir dengan cepat.Air putih juga bermnafaat untuk meningkatkan produksi saliva ( air liur ) dalam mulut,sehingga dapat membantu menjaga kebersihannya. 10 Tips Cara Mengatasi Bau Mulut saat Berpuasa

2. Setelah berbuka dan sahur,gosoklah gigi secara menyeluruh termasuk bagian lidah.Jika kurang bersih dalam menyikat gigi dapat meninggalkan partikel makanan membusuk didalam mulut

3. Selain air putih,minum teh hijau tanpa gula ketika berpuasa dan mekan sahur juga akan membantu mengatasi aroma tidak sedap pada mulu.Hal ini karena teh hijau mengandung zat polyphenol yang dapat membantu membunuh bakteri pada mulut dan saluran pernafasan.Fungsi lain dari tanaman ini adalah mengurangi peradangan pada rongga mulut dan gangguan pernafasan yang disebabkan oleh adap rokok. 10 Tips Cara Mengatasi Bau Mulut saat Berpuasa

4. Kurangi makanan yang banyak mengandung gula untuk mencegak pengeroposan pada gigi.Hindari pula makanan yang dapat menghasilkan bau tak sedap pada mulut seperti petai,jengkol,dan durian.

5. Hindari rokok karena merokok dalam kondisi tak berpuasa pun,merupakan salah satu penyebab bau mulu yang tak sedap

6. Hindari makanan yang mudah lengket pada gigi seperti cokelat,es krim,biskuit,dan kue basah lainnya.Jika ingin tetap mengkonsumsi makanan tersebut segera berkumur atau dibersihkan agar makanan tersebut tidak menempel pada gigi dalam waktu yang sangat lama.
7. Untuk hasil lebih maksimal,gunakan juga obat kumur antiseptik.Anda juga dapat menggunakan benang gigi untuk membersihkan sisa-sisa makanan pada sela-sela gigi.Jangan lupa tinggalkan kebiasaan menggosok gigi sebelum tidur malam.


8. Berolahraga ringan secara teratur menjelang atau sesudah berbuka puasa juga bermanfaat.Olahraga dapat melepaskan zat-zat beracun dalam tubuh termasuk penyebab bau pada mulut.Hindari tidur yang terlalu lama karena hal ini akan memacu bau mulut yang tidak sedap juga

9. Gunakan benang gigi (dental floss) untuk membersihkan sela-sela gigi yang tidak terjangkau dengan sikat gigi

10. Terakhir,segeralah konsultasikan dengan dokter gigi jika anda mengalami masalah pada gigi dan mulut seperti gigi berlubang ,karang gigi,peradangan pada mulut dan sariawan.

The tongue tastes bitter when sick ? ? Here are tips to reduce it ..

Not a few of us that if pain also has a tongue that tasted bitter complaints . Usually this bitterness arises in conjunction with symptoms of nausea or vomiting .
People who are sick are usually decreased appetite especially when coupled while chewing food tasted bitter on the tongue , of course, is a bit much also affects the amount of food consumed .
Bitter taste on the tongue is usually accompanied by unpleasant breath and dry mouth . Food needs to be dissolved in saliva could be felt for the sense of taste is also diminished ability .
Bitter taste on the tongue when the pain is caused by the reduction in saliva production due to various reasons . Reduced production of saliva, which also means less oxygen in the mouth also triggering the growth of bacteria anaerob. These bacteria produce sulfur that causes the odor and bitter taste on the tongue .
Additionally bitter taste on the tongue closely related to nausea and vomiting . The main cause of stomach acid that rises mouth leaving a bitter taste that is often settled some time . Examples of conditions that may cause nausea and vomiting that is ulcer , viral or bacterial infections , various digestive problems , headaches , taking medications such as antibiotics , ibuprofen and steroids , consume ingredients that irritate the stomach and so on .
Nausea and vomiting are mostly controlled by reflex and is part of the immune system so it's hard for us to control it but we can minimize the chances that can accelerate healing because we absorb nutrients from food . Some ways to prevent nausea and vomiting :

   1.
Eat a little but often
   2.
Drink warm beverages and food warm berkuah
  
3.Consumption of foods that contain lots of vitamin B6
   4.
Avoid pungent odors
Changes in taste on the tongue may also be caused by disruption of the sense of smell . Ability smell a rat closely related to the ability to feel , that sense of smell is in good condition as at the time sakit flu , fever , sinusitis , nasal infections , polyps , or allergic rhinitis , the tongue 's ability to taste is also affected .
To overcome the bitter taste on the tongue when sick how to overcome these
  •     Toothbrush . Stomach acid will be neutralized by the alkaline nature of toothpaste besides toothpaste also contains a plethora of fresh mint that gives the sensation of the mouth so whenever tongue tastes bitter after nausea or vomiting , brushing teeth can neutralize them .
  •     Avoid coffee and cigarettes
  •     Gargling with mouthwash .
  •     Eating foods that contain lots of fiber . Which contains natural fibers of course fruits and vegetables  Eat by chewing longer because in addition to cleaning the mouth also refined foods facilitate the         digestive system thereby reducing nausea .
  •     Drink plenty of water to increase the production of saliva and mucus in the nose .
  •     Multivitamin supplements to improve the condition of the body .

Kenapa ya makanan pedas bisa membuat kita menangis..??

Bagi pecinta makanan pedas, makanan yang mengandung banyak cabai sudah menjadi santapan sehari-hari. Tapi untuk sebagian orang, makan makanan yang pedas bisa menyebabkan mata dan hidung berair. Mengapa demikian?
Selain menambah citarasa makanan, cabai yang pedas dapat membuat tubuh sehat. Rasa pedas dan sensasi terbakar yang dihasilkan cabai disebabkan oleh konsentrasi tinggi dari bahan aktif yang disebut capsaicin.
Capsaicin merupakan bahan kimia nabati yang berasal dari alam. Bahan ini digunakan oleh cabai untuk sistem pertahanan dirinya agar tidak dimakan oleh pemangsa seperti hewan.
Capsaicin telah banyak dipelajari untuk efek mengurangi rasa sakit, manfaat baik untuk kardiovaskular, menurunkan berat badan dan membantu mencegah bisul. Selain itu, capsaicin ini juga yang membuat mata dan hidung orang yang memakannya berair. Mengapa?
Dilansir dari WHFoods, hal ini karena capsaicin dapat merangsang sekresi lendir yang membantu mengatasi hidung tersumbat, sesak paru-paru dan juga tentunya membuat orang seolah-olah menangis karena matanya berair.
Rasa pedas yang dapat merangsang sekresi lendir ini, menjadikan cabai baik untuk mencegah dan mengobati sinusitis, membantu mengurangi hidung tersumbat, flu dan sesak napas.
Tak hanya itu, mata berair ketika makan makanan pedas bisa juga disebabkan karena terjadi iritasi pada mucous membrane (selaput lendir) yang ada di mata.
Bila terjadi kontak dengan mucous membrane, seperti kulit atau mata, maka capsaicin akan menimbulkan rasa terbakar. Dan bila mempengaruhi mata, akan membuat orang menangis.

Have your ears take in water ? Is it bad ? Here's his explanation and tips ...

The entry of water into the ear often occurs when people are swimming . Most people would consider it trivial, but if left unchecked it can lead to the risk of infection .
Water entering the ear and not cleaned can cause problems . If the ear canal is wet , then the protection of the ear canal will be lost and the risk of infection .
Ear wax contains a substance that serves to keep the moisture so that the good bacteria can multiply on the skin lining the ear . In addition, the wax layer also serves as a protection against insects or foreign objects that enter , as reported by LIVESTRONG on Saturday ( 19/03/2011 ) .
Water and wax coating can not be mixed . When swimming , the water will go and wash this layer . When people swim for a longer period , then the water can really clean up this layer and makes the ear without a protector .
Without this layer of wax , water can remain in the ear canal and make your skin moist . Because the ear canal is a closed space , the water does not evaporate normally and remain in the ear canal moist .
When water is allowed to linger in the ear canal , it will create the perfect environment for a variety of infectious organisms , because infectious organisms such as fungi and bacteria love warm places , dark and damp places .
It is usually painful , especially when you pull the outer ear . It also can cause fluid becomes yellow ear rot


Then how the water out of the ears while swimming ?
1 . Move your headMove your head from one side to the other in a rocking motion in the direction of the shoulders , ears back to normal position and move back in the opposite direction . Insert a finger into the ear to create enough pressure to remove the water .
2 . Dry with a hair dryerTilting the head and dry with a dry towel can also help the water out . Blowing a hair dryer set to low heat into the ear can also help dry the ear . Tests hairdryer skin first to make sure the heat is not excessive .
3 . Mixed solution of alcohol and vinegarAccording to the American Academy of Family Physicians , a mixed solution of alcohol and white vinegar also helps drain water tortured in the ear canal . Enter mix 3-5 drops of this solution into the ear with a tilted head and leave it for a few moments . You will hear a hollow sound in the ear which means ear dry.

Pernahkah telinga anda kemasukan air? Apakah dapat berakibat buruk? Berikut penjelasannya dan tips nya...

Masuknya air ke dalam telinga sering terjadi saat orang sedang berenang. Kebanyakan orang akan menganggapnya sepele, padahal bila dibiarkan hal ini bisa menyebabkan risiko infeksi.

Air yang masuk ke telinga dan tidak dibersihkan bisa menyebabkan masalah. Jika saluran telinga basah, maka perlindungan pada saluran telinga akan hilang dan berisiko mengalami infeksi.

Telinga mengandung zat lilin yang berfungsi untuk menjaga kelembaban agar bakteri baik dapat berkembangbiak pada lapisan kulit di telinga. Selain itu, lapisan lilin ini juga berfungsi sebagai pelindung terhadap serangga atau benda asing yang masuk, seperti dilansir Livestrong, Sabtu (19/3/2011).

Air dan lapisan lilin ini tidak bisa bercampur. Ketika orang berenang, maka air akan masuk dan mencuci lapisan ini. Bila orang berenang untuk jangka waktu lama, maka air benar-benar bisa membersihkan lapisan ini dan membuat telinga tanpa pelindung.

Tanpa lapisan lilin ini, air dapat tetap berada di dalam saluran telinga dan membuat kulit menjadi lembab. Karena saluran telinga adalah ruang yang tertutup, air tidak menguap secara normal dan tetap berada pada saluran telinga yang lembab.

Bila air dibiarkan berlama-lama di dalam saluran telinga, hal ini akan menciptakan lingkungan yang sempurna bagi berbagai infeksi organisme, karena infeksi organisme seperti jamur dan bakteri sangat suka tempat hangat, gelap dan tempat-tempat yang basah.

Hal ini biasanya menyakitkan, terutama ketika Anda tarik bagian luar telinga. Ini juga bisa menyebabkan cairan kuning telinga menjadi busuk

Lalu bagaimana mengeluarkan air dari telinga saat berenang?

1. Gerakkan kepala
Gerakkan kepala dari satu sisi ke sisi lain dalam gerakan goyang ke arah bahu, kembalikan telinga ke posisi normal dan gerakkan kembali pada arah yang berlawanan. Masukkan jari ke telinga untuk membuat tekanan yang cukup untuk mengeluarkan air.

2. Keringkan dengan pengering rambut
Memiringkan kepala dan mengeringkannya dengan handuk kering juga bisa membantu air keluar. Hembusan pengering rambut yang disetel dengan panas yang rendah ke dalam telinga juga bisa membantu mengeringkan telinga. Tes pengering rambut pada kulit terlebih dahulu untuk memastikan panasnya tidak berlebihan.

3. Campuran larutan alkohol dan cuka
Menurut American Academy of Family Physicians, campuran larutan alkohol dan cuka putih juga membantu mengeringkan air yang tersiksa di saluran telinga. Masukkan 3-5 tetes campuran larutan ini ke dalam telinga dengan kepala dimiringkan dan biarkan selama beberapa saat. Anda akan mendengarkan suara hampa di telinga yang berarti telinga mulai kering.

Ternyata banyak manfaat dari puasa..

 Ibadah Puasa


Ibadah puasa merupakan ibadah yang unik. Apalagi saat ini menjelang bulan Ramadhan dimana umat muslim wajib melaksanakan ibadah puasa sesuai syariat. Puasa ialah menahan makan dan minum serta hawa nafsu dari fajar hingga matahari tenggelam.

Ibadah puasa merupakan ibadah yang juga sangat bermanfaat bagi kesehatan. Banyak manfaat yang dapat kita raih saat menjalankan ibadah puasa. Sebab dengan berpuasa kita dapat mengistirahatkan organ pencernaan yang selama setahun bekerja sangat keras.

Nah, untuk mengetahui apa saja manfaat berpuasa bagi kesehatan penjelasan di bawah ini dapat membantu anda mengetahui manfaat dalam berpuasa.


Berikut Manfaat Puasa Bagi Kesehatan

1. Saat berpuasa ternyata terjadi peningkatan HDL and apoprotein alfa1, dan penurunan LDL ternyata sangat bermanfaat bagi kesehatan jantung dan pembuluh darah. Beberapa the penelitian "chronobiological" menunjukkan saat puasa ramadan berpengaruh terhadap ritme penurunan distribusi sirkadian dari suhu tubuh, hormon kortisol, melatonin dan glisemia. Berbagai perubahan yang meskipun ringan tersebut tampaknya juga berperanan bagi peningkatan kesehatan manusia.

2. Keadaan psikologis yang tenang, teduh dan tidak dipenuhi rasa amarah saat puasa ternyata dapat menurunkan adrenalin. Saat marah terjadi peningkatan jumlah adrenalin sebesar 20-30 kali lipat. Adrenalin akan memperkecil kontraksi otot empedu, menyempitkan pembuluh darah perifer, meluaskan pebuluh darah koroner, meningkatkan tekanan darah rterial dan menambah volume darah ke jantung dan jumlah detak jantung. Adrenalin juga menambah pembentukan kolesterol dari lemak protein berkepadatan rendah. Berbagai hal tersebut ternyata dapat meningkatkan resiko penyakit pembuluh darah, jantung dan otak seperti jantung koroner, stroke dan lainnya.

3. Jumlah sel yang mati dalam tubuh mencapai 125 juta perdetik, namun yang lahir dan meremaja lebih banyak lagi. Saat puasa terjdi perubahan dan konversi yang massif dalam asam amino yang terakumulasi dari makanan. Sebelum didistribusikan dalam tubuh terjadi format ulang. Sehingga memberikan kesempatan tunas baru sel untuk memperbaiki dan merestorasi fungsi dan kinerjanya. Pola makan saat puasa dapat mensuplai asam lemak dan asam amino penting saat makan sahur dan berbuka. Sehingga terbentuk tunas-tunas protein , lemak, fosfat, kolesterol dan lainnya untuk membangun sel baru dan membersihkan sel lemak yang menggumpal di dalam hati.

4. Puasa bisa menurunkan kadar gula darah, kolesterol dan mengendalikan tekanan darah. Itulah sebabnya, puasa sangat dianjurkan bagi perawatan mereka yang menderita penyakit diabetes, kolesterol tinggi, kegemukan dan darah tinggi. Dalam kondisi tertentu, seorang pasien bahkan dibolehkan berpuasa, kecuali mereka yang menderita sakit diabetes yang sudah parah, jantung koroner dan batu ginjal. Puasa dapat menjaga perut yang penuh disebabkan banyak makan adalah penyebab utama kepada bermacam-macam penyakit khususnya obesitas, hiperkolesterol, diabetes dan penyakit yang diakibatkan kelebihan nutrisi lainnya.

5. Sedang di antara manfaat puasa ditinjau dari segi kesehatan adalah membersihkan usus-usus, memperbaiki kerja pencernaan, membersihkan tubuh dari sisa-sisa dan endapan makanan, mengurangi kegemukan dan kelebihan lemak di perut.

6. Termasuk manfaat puasa adalah mematahkan nafsu. Karena berlebihan, balk dalam makan maupun minum serta menggauli isteri, bisa mendorong nafsu berbuat kejahatan, enggan mensyukuri nikmat serta mengakibatkan kelengahan.

7. Penghentian konsumsi air selama puasa sangat efektif meningkatkan konsentrasi urin dalam ginjal serta meningkatkan kekuatan osmosis urin hingga mencapai 1000 sampai 12.000 ml osmosis/kg air. Dalam keadaan tertentu hal ini akan member perlindungan terhadap fungsi ginjal. Kekurangan air dalam puasa ternyata dapat meminimalkan volume air dalam darah. Kondisi ini berakibat memacu kinerja mekanisme local pengatur pembuluh darah dan menambah prostaglandin yang pada akhirnya memacu fungsi dan kerja sel darah merah.

8. Dalam keadaan puasa ternyata dapat meningkatkan sistem kekebalan tubuh. Penelitian menunjukkan saat puasa terjadi pengkatan limfosit hingga sepuluh kali lipat. Kendati keseluruhan sel darah putih tidak berubah ternyata sel T mengalani kenaikkan pesat. Perubahan aksidental lipoprotein yang berkepadatan rendah (LDL), tanpa diikuti penambahan HDL. LDL merupakan model lipoprotein yang meberika pengaruh stumulatif bagi respon imunitas tubuh.

9. Pada pelitian terbaru menunjukkan bahwa terjadi penurunan kadar apobetta, menaikkan kadar apoalfa1 dibandingkan sebelum puasa. Kondisi tersebut dapat menjauhkan seragan penyakit jantung dan pembuluh darah.

10. Penelitian endokrinologi menunjukkan bahwa pola makan saat puasa yang bersifat rotatif menjadi beban dalam asimilasi makanan di dalam tubuh. Keadaan ini mengakibatkan pengeluaran hormon sistem pencernaan dan insulin dalam jumlah besar. Penurunan berbagai hormon tersebut merupakan salah satu rahasia hidup jangka panjang.

Lidah terasa pahit saat sakit?? Berikut tips untuk menguranginya..

Tidak sedikit diantara kita yang jika sakit juga memiliki keluhan lidah yang terasa pahit. Biasanya rasa pahit ini timbul bersamaan dengan gejala mual-mual atau muntah-muntah.
Orang yang sedang sakit biasanya selera makannya menurun apalagi kalau ditambah saat mengunyah makanan terasa pahit dilidah, tentunya ini sedikit banyak juga mempengaruhi jumlah makanan yang dikonsumsi.
Rasa pahit dilidah biasanya disertai dengan bau nafas yang tidak sedap dan mulut kering. Makanan perlu dilarutkan dalam air liur untuk bisa dirasakan itu sebabnya Indera pengecap juga berkurang kemampuannya.
Rasa pahit dilidah saat sakit disebabkan karena berkurangnya produksi air liur karena berbagai sebab. Produksi air liur yang berkurang artinya juga oksigen di mulut juga berkurang sehingga memicu pertumbuhan bakteri anaerob. Bakteri-bakteri tersebut memproduksi sulfur yang menyebabkan bau tidak sedap dan rasa pahit dilidah.
Selain itu rasa pahit dilidah erat hubungannya dengan mual-mual dan muntah. Penyebab utamanya yakni asam lambung yang naik kemulut meninggalkan rasa pahit yang sering menetap beberapa waktu. Contoh kondisi yang mungkin menyebabkan mual-mual dan muntah yaitu maag, beberapa infeksi virus maupun bakteri, berbagai masalah pada pencernaan, sakit kepala, mengkonsumsi obat-obatan seperti antibiotik, ibuprofen dan steroid, mengkonsumsi bahan bahan yang mengiritasi lambung dan sebagainya.
Mual dan muntah kebanyakan dikendalikan oleh reflek dan merupakan bagian dari sistem pertahanan tubuh jadi sulit bagi kita untuk mengendalikannya tetapi kita bisa memperkecil kemungkinannya sehingga bisa mempercepat penyembuhan karena kita menyerap nutrisi dari makanan. Beberapa cara mencegah mual dan muntah:
  • Makan sedikit-sedikit tetapi sering
  • Minum minuman hangat dan makanan berkuah yang hangat
  • Konsumsi makanan yang banyak mengandung vitamin B6
  • Hindari bau-bauan menyengat
Perubahan rasa dilidah juga bisa disebabkan karena terganggunya indera penciuman. Kemampuan membau erat hubungannya dengan kemampuan merasa, kalau indera pembau sedang dalam kondisi tidak baik seperti pada saat sakit flu, demam, sinusitis, infeksi hidung, polip, maupun rhinitis alergi, kemampuan lidah untuk mengecap juga terpengaruh.
Untuk mengatasi rasa pahit dilidah saat sakit berikut ini cara mengatasinya
  • Sikat gigi. Asam lambung akan dinetralisir oleh pasta gigi yang sifatnya basa selain itu pasta gigi juga kebanyakan mengandung mint yang memberikan sensasi segar dimulut jadi kapanpun lidah terasa pahit setelah mual atau muntah, menyikat gigi bisa menetralisirnya.
  • Hindari kopi dan rokok
  • Berkumur dengan obat kumur.
  • Makan makanan yang banyak mengandung serat. Yang banyak mengandung serat alami tentu saja buah-buahan dan sayuran. Makanlah dengan cara mengunyah lebih lama karena selain membersihkan mulut juga makanan yang halus mempermudah kerja sistem pencernaan sehingga mengurangi rasa mual.
  • Banyak minum air putih untuk meningkatkan produksi air liur dan mengencerkan lendir di hidung.
  • Suplemen multivitamin untuk meningkatkan kondisi tubuh.

whether tingling hands often can be bad?

Carpal tunel syndrome is a condition caused by the suppression of the peripheral nerves that affect one or both hands . This condition is characterized by a sensation of numbness , tingling , burning , or pain in the hands and wrists . People affected by this disorder can wake up at night due to the pain suddenly appeared . Strain or injury to the hands and wrists , or a variety of other disorders can cause this disorder . This disorder can appear as a symptom of other diseases or not .
cause
The things that helped cause carpal tunel syndrome include :
1 . Conditions or diseases that can cause or contribute to the arm pain or swelling in the joints and soft tissues in the arm which can reduce blood flow to the hands . Conditions and diseases including obesity , rheumatoid arthritis , gout , diabetes , lupus , or hypothyroidism .
2 . Movements hands and wrists were done over membranes can cause the tendon to swell .
3 . Buildup of fluid ( edema ) in the carpal tunnel that may occur due to pregnancy or a condition such as rheumatoid arthritis or diabetes .
4 . Wrist fractures , bone dislocations , the growth of new bone healing of bone , or bone spurs . This condition can take up space in the carpal tunnel and put more pressure on the median nerve .
5 . Tumors and other growth ( such as ganglions ) .
6 . Tissue abnormalities in the hands and wrists caused by aging and repetitive movements of the hand or wrist .
7 . Smoking , which can contribute to carpal tunel syndrome by affecting blood flow to the median nerve .
Carpal tunel syndrome is work-related injuries that require a strong hand movements , repetitive or hand work in a long time in the same position as when you 're typing or holding a mouse in a long time .
symptom
The most common symptoms of carpal tunel syndrome d is tingling , numbness , weakness , or pain felt in the fingers or in the palm of the hand . Symptoms most often occur on the hand that contained the median nerve , such as the thumb, index finger , middle finger , and half of the ring finger . If your little finger is not affected , this may be a sign that you are affected by this syndrome , because the little finger is usually controlled by a different nerve than the thumb and other fingers .
Symptoms of carpal tunel syndrome often occurs in both hands , but the symptoms will get worse in one hand than the other . Typically , carpal tunel syndrome patients would awaken during sleep due to pain or numbness in the hands .
Symptoms of mild carpal tunnels can affect the hand and sometimes the forearm or spread to the shoulder . Symptoms include :
1 . Numbness or pain in the hands
2 . Tingling
3 . Numbness or pain gets worse when you use the hand or wrist , especially when gripping objects by hand or tekukanpergelangan your hands .
4 . Occasional pain in the arm between the elbow and wrist .
5 . Stiffness in the fingers when you wake up in the morning .

Apakah tangan sering kesemutan bisa berakibat buruk?

Sindrom karpal tunel merupakan suatu kondisi yang diakibatkan oleh tertekannya saraf perifer yang mempengaruhi satu atau kedua tangan. Kondisi ini ditandai dengan sensasi mati rasa, kesemutan, terbakar, atau nyeri di tangan dan pergelangan tangan. Orang yang terkena gangguan ini bisa terbangun di malam hari akibat rasa sakit yang tiba-tiba muncul. Regangan atau cedera yang pada tangan dan pergelangan tangan atau berbagai gangguan lain dapat menyebabkan gangguan ini. Kelainan ini dapat muncul sebagai gejala berbagai penyakit lain ataupun tidak.
Penyebab
Hal-hal yang membantu menyebabkan sindrom karpal tunel meliputi:
1. Kondisi atau penyakit yang dapat menyebabkan atau memberikan kontribusi terhadap nyeri lengan atau pembengkakan pada sendi dan jaringan lunak di lengan yang dapat mengurangi aliran darah ke tangan. Kondisi dan penyakit termasuk obesitas, rheumatoid arthritis, asam urat, diabetes, lupus, atau hipotiroid.
2. Gerakan tangan dan pergelangan tangan yang dilakukan berulang dapat menyebabkan selaput tendon membengkak.
3. Penumpukan cairan (edema) di terowongan karpal yang dapat terjadi akibat kehamilan atau kondisi seperti rheumatoid arthritis atau diabetes.
4. Patah tulang di pergelangan tangan, dislokasi tulang, pertumbuhan tulang baru dari tulang penyembuhan, atau tulang taji. Kondisi ini dapat mengambil ruang di terowongan karpal dan menempatkan lebih banyak tekanan pada saraf median.
5. Tumor dan pertumbuhan lainnya (seperti ganglions).
6. Ketidaknormalan jaringan di tangan dan pergelangan tangan yang disebabkan oleh penuaan dan gerakan berulang dari tangan atau pergelangan tangan.
7. Merokok, yang dapat berkontribusi untuk sindrom karpal tunel dengan mempengaruhi aliran darah ke saraf median.
Sindrom karpal tunel merupakan cedera yang berhubungan dengan pekerjaan yang membutuhkan gerakan tangan yang kuat, berulang-ulang atau tangan bekerja dalam waktu yang lama dengan posisi yang sama seperti saat Anda sedang mengetik atau memegang tetikus dalam waktu yang lama.
Gejala
Gejala yang paling umum d sindrom karpal tunel adalah kesemutan, mati rasa, kelemahan, atau nyeri yang terasa di jari-jari atau di telapak tangan. Gejala paling sering terjadi di bagian tangan yang terdapat saraf median, seperti ibu jari, jari telunjuk, jari tengah, dan setengah dari jari manis. Jika jari kelingking Anda tidak terpengaruh, ini mungkin menjadi pertanda bahwa Anda terkena sindrom  ini, karena jari kelingking biasanya dikendalikan oleh saraf yang berbeda dari ibu jari dan jari lainnya.
Gejala sindrom karpal tunel sering terjadi di kedua tangan, tetapi gejalanya akan memburuk di satu tangan dari yang lain. Biasanya, penderita sindrom karpal tunel akan terbangun saat tidur akibat rasa sakit atau mati rasa di tangan.
Gejala karpal tunel ringan dapat mempengaruhi tangan dan kadang-kadang lengan bawah atau  menyebar sampai ke bahu. Gejalanya berupa:
1. Mati rasa atau nyeri di tangan
2. Kesemutan
3. Mati rasa atau rasa sakit semakin parah bila Anda menggunakan tangan atau pergelangan tangan, terutama saat mencengkeram benda dengan tangan atau tekukanpergelangan tangan Anda.
4. Nyeri sesekali di lengan antara siku dan pergelangan tangan.
5. Kekakuan pada jari-jari saat bangun di pagi hari.

Distillation

Distillation is a process of separating component substances from liquid mixtures through vaporisation and condensation, based on different volatility (vaporization point) of components in the mixture. Distillation is a unit operation, or a physical separation process, and not a chemical reaction.
Commercially, distillation has a number of applications. It is used to separate crude oil into more fractions for specific uses such as transport, power generation and heating. Air is distilled to separate its components—notably oxygen, nitrogen, and argon—for industrial use. Liquid chemicals for diverse uses are distilled after synthesis to remove impurities and unreacted starting materials. Distillation of fermented solutions can produce distilled beverages with a higher alcohol content. The premises where distillation is carried out, especially distillation of alcohol, are known as a distillery. A still is the equipment used for distillation.

History

See also: Distilled beverage
Distillation apparatus of Zosimos of Panopolis, from Marcelin Berthelot, Collection des anciens alchimistes grecs (3 vol., Paris, 1887–1888).
The first evidence of distillation comes from Greek alchemists working in Alexandria in the 1st century AD.[2] Distilled water has been known since at least c. 200, when Alexander of Aphrodisias described the process.[3] Distillation in China could have begun during the Eastern Han Dynasty (1st–2nd centuries), but archaeological evidence indicates that actual distillation of beverages began in the Jin and Southern Song dynasties.[4] A still was found in an archaeological site in Qinglong, Hebei province dating to the 12th century. Distilled beverages were more common during the Yuan dynasty.[4] Arabs learned the process from the Alexandrians and used it extensively in their chemical experiments.[citation needed]
Clear evidence of the distillation of alcohol comes from the School of Salerno in the 12th century.[2][5] Fractional distillation was developed by Tadeo Alderotti in the 13th century.[6]
In 1500, German alchemist Hieronymus Braunschweig published Liber de arte destillandi (The Book of the Art of Distillation)[7] the first book solely dedicated to the subject of distillation, followed in 1512 by a much expanded version. In 1651, John French published The Art of Distillation the first major English compendium of practice, though it has been claimed[8] that much of it derives from Braunschweig's work. This includes diagrams with people in them showing the industrial rather than bench scale of the operation.
Hieronymus Brunschwig's Liber de arte Distillandi de Compositis (Strassburg, 1512) Chemical Heritage Foundation
A retort
Distillation
Old Ukrainian vodka still
Simple liqueur distillation in East Timor
As alchemy evolved into the science of chemistry, vessels called retorts became used for distillations. Both alembics and retorts are forms of glassware with long necks pointing to the side at a downward angle which acted as air-cooled condensers to condense the distillate and let it drip downward for collection. Later, copper alembics were invented. Riveted joints were often kept tight by using various mixtures, for instance a dough made of rye flour.[9] These alembics often featured a cooling system around the beak, using cold water for instance, which made the condensation of alcohol more efficient. These were called pot stills. Today, the retorts and pot stills have been largely supplanted by more efficient distillation methods in most industrial processes. However, the pot still is still widely used for the elaboration of some fine alcohols such as cognac, Scotch whisky, tequila and some vodkas. Pot stills made of various materials (wood, clay, stainless steel) are also used by bootleggers in various countries. Small pot stills are also sold for the domestic production[10] of flower water or essential oils.
Early forms of distillation were batch processes using one vaporization and one condensation. Purity was improved by further distillation of the condensate. Greater volumes were processed by simply repeating the distillation. Chemists were reported to carry out as many as 500 to 600 distillations in order to obtain a pure compound.[11]
In the early 19th century the basics of modern techniques including pre-heating and reflux were developed, particularly by the French,[11] then in 1830 a British Patent was issued to Aeneas Coffey for a whiskey distillation column,[12] which worked continuously and may be regarded as the archetype of modern petrochemical units. In 1877, Ernest Solvay was granted a U.S. Patent for a tray column for ammonia distillation[13] and the same and subsequent years saw developments of this theme for oil and spirits.
With the emergence of chemical engineering as a discipline at the end of the 19th century, scientific rather than empirical methods could be applied. The developing petroleum industry in the early 20th century provided the impetus for the development of accurate design methods such as the McCabe–Thiele method and the Fenske equation. The availability of powerful computers has also allowed direct computer simulation of distillation columns.

Applications of distillation

The application of distillation can roughly be divided in four groups: laboratory scale, industrial distillation, distillation of herbs for perfumery and medicinals (herbal distillate), and food processing. The latter two are distinctively different from the former two in that in the processing of beverages, the distillation is not used as a true purification method but more to transfer all volatiles from the source materials to the distillate.
The main difference between laboratory scale distillation and industrial distillation is that laboratory scale distillation is often performed batch-wise, whereas industrial distillation often occurs continuously. In batch distillation, the composition of the source material, the vapors of the distilling compounds and the distillate change during the distillation. In batch distillation, a still is charged (supplied) with a batch of feed mixture, which is then separated into its component fractions which are collected sequentially from most volatile to less volatile, with the bottoms (remaining least or non-volatile fraction) removed at the end. The still can then be recharged and the process repeated.
In continuous distillation, the source materials, vapors, and distillate are kept at a constant composition by carefully replenishing the source material and removing fractions from both vapor and liquid in the system. This results in a better control of the separation process.

Idealized distillation model

The boiling point of a liquid is the temperature at which the vapor pressure of the liquid equals the pressure around the liquid, enabling bubbles to form without being crushed. A special case is the normal boiling point, where the vapor pressure of the liquid equals the ambient atmospheric pressure.
It is a common misconception that in a liquid mixture at a given pressure, each component boils at the boiling point corresponding to the given pressure and the vapors of each component will collect separately and purely. This, however, does not occur even in an idealized system. Idealized models of distillation are essentially governed by Raoult's law and Dalton's law, and assume that vapor–liquid equilibria are attained.
Raoult's law states that the vapor pressure of a solution is dependent on 1) the vapor pressure of each chemical component in the solution and 2) the fraction of solution each component makes up aka the mole fraction. This law applies to ideal solutions, or solutions that have different components but whose molecular interactions are the same as or very similar to pure solutions.
Dalton's law states that the total vapor pressure is the sum of the vapor pressures of each individual component in the mixture. When a multi-component liquid is heated, the vapor pressure of each component will rise, thus causing the total vapor pressure to rise. When the total vapor pressure reaches the pressure surrounding the liquid, boiling occurs and liquid turns to gas throughout the bulk of the liquid. Note that a mixture with a given composition has one boiling point at a given pressure, when the components are mutually soluble.
An implication of one boiling point is that lighter components never cleanly "boil first". At boiling point, all volatile components boil, but for a component, its percentage in the vapor is the same as its percentage of the total vapor pressure. Lighter components have a higher partial pressure and thus are concentrated in the vapor, but heavier volatile components also have a (smaller) partial pressure and necessarily evaporate also, albeit being less concentrated in the vapor. Indeed, batch distillation and fractionation succeed by varying the composition of the mixture. In batch distillation, the batch evaporates, which changes its composition; in fractionation, liquid higher in the fractionation column contains more lights and boils at lower temperatures.
The idealized model is accurate in the case of chemically similar liquids, such as benzene and toluene. In other cases, severe deviations from Raoult's law and Dalton's law are observed, most famously in the mixture of ethanol and water. These compounds, when heated together, form an azeotrope, which is a composition with a boiling point higher or lower than the boiling point of each separate liquid. Virtually all liquids, when mixed and heated, will display azeotropic behaviour. Although there are computational methods that can be used to estimate the behavior of a mixture of arbitrary components, the only way to obtain accurate vapor–liquid equilibrium data is by measurement.
It is not possible to completely purify a mixture of components by distillation, as this would require each component in the mixture to have a zero partial pressure. If ultra-pure products are the goal, then further chemical separation must be applied. When a binary mixture is evaporated and the other component, e.g. a salt, has zero partial pressure for practical purposes, the process is simpler and is called evaporation in engineering.

Batch distillation

Main article: Batch distillation
A batch still showing the separation of A and B.
Heating an ideal mixture of two volatile substances A and B (with A having the higher volatility, or lower boiling point) in a batch distillation setup (such as in an apparatus depicted in the opening figure) until the mixture is boiling results in a vapor above the liquid which contains a mixture of A and B. The ratio between A and B in the vapor will be different from the ratio in the liquid: the ratio in the liquid will be determined by how the original mixture was prepared, while the ratio in the vapor will be enriched in the more volatile compound, A (due to Raoult's Law, see above). The vapor goes through the condenser and is removed from the system. This in turn means that the ratio of compounds in the remaining liquid is now different from the initial ratio (i.e., more enriched in B than the starting liquid).
The result is that the ratio in the liquid mixture is changing, becoming richer in component B. This causes the boiling point of the mixture to rise, which in turn results in a rise in the temperature in the vapor, which results in a changing ratio of A : B in the gas phase (as distillation continues, there is an increasing proportion of B in the gas phase). This results in a slowly changing ratio A : B in the distillate.
If the difference in vapor pressure between the two components A and B is large (generally expressed as the difference in boiling points), the mixture in the beginning of the distillation is highly enriched in component A, and when component A has distilled off, the boiling liquid is enriched in component B.

Continuous distillation

Main article: Continuous distillation
Continuous distillation is an ongoing distillation in which a liquid mixture is continuously (without interruption) fed into the process and separated fractions are removed continuously as output streams as time passes during the operation. Continuous distillation produces at least two output fractions, including at least one volatile distillate fraction, which has boiled and been separately captured as a vapor condensed to a liquid. There is always a bottoms (or residue) fraction, which is the least volatile residue that has not been separately captured as a condensed vapor.
Continuous distillation differs from batch distillation in the respect that concentrations should not change over time. Continuous distillation can be run at a steady state for an arbitrary amount of time. For any source material of specific composition, the main variables that affect the purity of products in continuous distillation are the reflux ratio and the number of theoretical equilibrium stages (practically, the number of trays or the height of packing). Reflux is a flow from the condenser back to the column, which generates a recycle that allows a better separation with a given number of trays. Equilibrium stages are ideal steps where compositions achieve vapor–liquid equilibrium, repeating the separation process and allowing better separation given a reflux ratio. A column with a high reflux ratio may have fewer stages, but it refluxes a large amount of liquid, giving a wide column with a large holdup. Conversely, a column with a low reflux ratio must have a large number of stages, thus requiring a taller column.

General improvements

Both batch and continuous distillations can be improved by making use of a fractionating column on top of the distillation flask. The column improves separation by providing a larger surface area for the vapor and condensate to come into contact. This helps it remain at equilibrium for as long as possible. The column can even consist of small subsystems ('trays' or 'dishes') which all contain an enriched, boiling liquid mixture, all with their own vapor–liquid equilibrium.
There are differences between laboratory-scale and industrial-scale fractionating columns, but the principles are the same. Examples of laboratory-scale fractionating columns (in increasing efficiency) include
  • Air condenser
  • Vigreux column (usually laboratory scale only)
  • Packed column (packed with glass beads, metal pieces, or other chemically inert material)
  • Spinning band distillation system.

Laboratory scale distillation

Typical laboratory distillation unit
Laboratory scale distillations are almost exclusively run as batch distillations. The device used in distillation, sometimes referred to as a still, consists at a minimum of a reboiler or pot in which the source material is heated, a condenser in which the heated vapour is cooled back to the liquid state, and a receiver in which the concentrated or purified liquid, called the distillate, is collected. Several laboratory scale techniques for distillation exist (see also distillation types).

Simple distillation

In simple distillation, the vapor is immediately channeled into a condenser. Consequently, the distillate is not pure but rather its composition is identical to the composition of the vapors at the given temperature and pressure. That concentration follows Raoult's law.
As a result, simple distillation is effective only when the liquid boiling points differ greatly (rule of thumb is 25 °C)[14] or when separating liquids from non-volatile solids or oils. For these cases, the vapor pressures of the components are usually sufficiently different that the distillate may be sufficiently pure for its intended purpose.

Fractional distillation

Main article: Fractional distillation
For many cases, the boiling points of the components in the mixture will be sufficiently close that Raoult's law must be taken into consideration. Therefore, fractional distillation must be used in order to separate the components by repeated vaporization-condensation cycles within a packed fractionating column. This separation, by successive distillations, is also referred to as rectification.[15]
As the solution to be purified is heated, its vapors rise to the fractionating column. As it rises, it cools, condensing on the condenser walls and the surfaces of the packing material. Here, the condensate continues to be heated by the rising hot vapors; it vaporizes once more. However, the composition of the fresh vapors are determined once again by Raoult's law. Each vaporization-condensation cycle (called a theoretical plate) will yield a purer solution of the more volatile component.[16] In reality, each cycle at a given temperature does not occur at exactly the same position in the fractionating column; theoretical plate is thus a concept rather than an accurate description.
More theoretical plates lead to better separations. A spinning band distillation system uses a spinning band of Teflon or metal to force the rising vapors into close contact with the descending condensate, increasing the number of theoretical plates.[17]

Steam distillation

Main article: Steam distillation
Like vacuum distillation, steam distillation is a method for distilling compounds which are heat-sensitive.[18] The temperature of the steam is easier to control than the surface of a heating element, and allows a high rate of heat transfer without heating at a very high temperature. This process involves bubbling steam through a heated mixture of the raw material. By Raoult's law, some of the target compound will vaporize (in accordance with its partial pressure). The vapor mixture is cooled and condensed, usually yielding a layer of oil and a layer of water.
Steam distillation of various aromatic herbs and flowers can result in two products; an essential oil as well as a watery herbal distillate. The essential oils are often used in perfumery and aromatherapy while the watery distillates have many applications in aromatherapy, food processing and skin care.
Dimethyl sulfoxide usually boils at 189 °C. Under a vacuum, it distills off into the receiver at only 70 °C.
Perkin triangle distillation setup
1: Stirrer bar/anti-bumping granules 2: Still pot 3: Fractionating column 4: Thermometer/Boiling point temperature 5: Teflon tap 1 6: Cold finger 7: Cooling water out 8: Cooling water in 9: Teflon tap 2 10: Vacuum/gas inlet 11: Teflon tap 3 12: Still receiver

Vacuum distillation

Main article: Vacuum distillation
Some compounds have very high boiling points. To boil such compounds, it is often better to lower the pressure at which such compounds are boiled instead of increasing the temperature. Once the pressure is lowered to the vapor pressure of the compound (at the given temperature), boiling and the rest of the distillation process can commence. This technique is referred to as vacuum distillation and it is commonly found in the laboratory in the form of the rotary evaporator.
This technique is also very useful for compounds which boil beyond their decomposition temperature at atmospheric pressure and which would therefore be decomposed by any attempt to boil them under atmospheric pressure.
Molecular distillation is vacuum distillation below the pressure of 0.01 torr.[19] 0.01 torr is one order of magnitude above high vacuum, where fluids are in the free molecular flow regime, i.e. the mean free path of molecules is comparable to the size of the equipment. The gaseous phase no longer exerts significant pressure on the substance to be evaporated, and consequently, rate of evaporation no longer depends on pressure. That is, because the continuum assumptions of fluid dynamics no longer apply, mass transport is governed by molecular dynamics rather than fluid dynamics. Thus, a short path between the hot surface and the cold surface is necessary, typically by suspending a hot plate covered with a film of feed next to a cold plate with a line of sight in between. Molecular distillation is used industrially for purification of oils.

Air-sensitive vacuum distillation

Some compounds have high boiling points as well as being air sensitive. A simple vacuum distillation system as exemplified above can be used, whereby the vacuum is replaced with an inert gas after the distillation is complete. However, this is a less satisfactory system if one desires to collect fractions under a reduced pressure. To do this a "cow" or "pig" adaptor can be added to the end of the condenser, or for better results or for very air sensitive compounds a Perkin triangle apparatus can be used.
The Perkin triangle, has means via a series of glass or Teflon taps to allows fractions to be isolated from the rest of the still, without the main body of the distillation being removed from either the vacuum or heat source, and thus can remain in a state of reflux. To do this, the sample is first isolated from the vacuum by means of the taps, the vacuum over the sample is then replaced with an inert gas (such as nitrogen or argon) and can then be stoppered and removed. A fresh collection vessel can then be added to the system, evacuated and linked back into the distillation system via the taps to collect a second fraction, and so on, until all fractions have been collected.

Short path distillation

Short path vacuum distillation apparatus with vertical condenser (cold finger), to minimize the distillation path; 1: Still pot with stirrer bar/anti-bumping granules 2: Cold finger – bent to direct condensate 3: Cooling water out 4: cooling water in 5: Vacuum/gas inlet 6: Distillate flask/distillate.
Short path distillation is a distillation technique that involves the distillate travelling a short distance, often only a few centimeters, and is normally done at reduced pressure.[20] A classic example would be a distillation involving the distillate travelling from one glass bulb to another, without the need for a condenser separating the two chambers. This technique is often used for compounds which are unstable at high temperatures or to purify small amounts of compound. The advantage is that the heating temperature can be considerably lower (at reduced pressure) than the boiling point of the liquid at standard pressure, and the distillate only has to travel a short distance before condensing. A short path ensures that little compound is lost on the sides of the apparatus. The Kugelrohr is a kind of a short path distillation apparatus which often contain multiple chambers to collect distillate fractions.

Zone distillation

Zone distillation is a distillation process in long container with partial melting of refined matter in moving liquid zone and condensation of vapor in the solid phase at condensate pulling in cold area. The process is worked in theory. When zone heater is moving from the top to the bottom of the container then solid condensate with irregular impurity distribution is forming. Then most pure part of the condensate may be extracted as product. The process may be iterated many times by moving (without turnover) the received condensate to the bottom part of the container on the place of refined matter. The irregular impurity distribution in the condensate (that is efficiency of purification) increases with number of repetitions of the process. Zone distillation is a distillation analog of zone recrystallization. Impurity distribution in the condensate is described by known equations of zone recrystallization with various numbers of iteration of process – with replacement distribution efficient k of crystallization on separation factor α of distillation.[21][22]

Other types

  • The process of reactive distillation involves using the reaction vessel as the still. In this process, the product is usually significantly lower-boiling than its reactants. As the product is formed from the reactants, it is vaporized and removed from the reaction mixture. This technique is an example of a continuous vs. a batch process; advantages include less downtime to charge the reaction vessel with starting material, and less workup. Distillation "over a reactant" could be classified as a reactive distillation. It is typically used to remove volatile impurity from the distallation feed. For example a little lime may be added to remove carbon dioxide from water followed by a second distillation with a little sulphuric acid added to remove traces of ammonia.
  • Catalytic distillation is the process by which the reactants are catalyzed while being distilled to continuously separate the products from the reactants. This method is used to assist equilibrium reactions reach completion.
  • Pervaporation is a method for the separation of mixtures of liquids by partial vaporization through a non-porous membrane.
  • Extractive distillation is defined as distillation in the presence of a miscible, high boiling, relatively non-volatile component, the solvent, that forms no azeotrope with the other components in the mixture.
  • Flash evaporation (or partial evaporation) is the partial vaporization that occurs when a saturated liquid stream undergoes a reduction in pressure by passing through a throttling valve or other throttling device. This process is one of the simplest unit operations, being equivalent to a distillation with only one equilibrium stage.
  • Codistillation is distillation which is performed on mixtures in which the two compounds are not miscible.
The unit process of evaporation may also be called "distillation":
  • In rotary evaporation a vacuum distillation apparatus is used to remove bulk solvents from a sample. Typically the vacuum is generated by a water aspirator or a membrane pump.
  • In a kugelrohr a short path distillation apparatus is typically used (generally in combination with a (high) vacuum) to distill high boiling (> 300 °C) compounds. The apparatus consists of an oven in which the compound to be distilled is placed, a receiving portion which is outside of the oven, and a means of rotating the sample. The vacuum is normally generated by using a high vacuum pump.
Other uses:
  • Dry distillation or destructive distillation, despite the name, is not truly distillation, but rather a chemical reaction known as pyrolysis in which solid substances are heated in an inert or reducing atmosphere and any volatile fractions, containing high-boiling liquids and products of pyrolysis, are collected. The destructive distillation of wood to give methanol is the root of its common name – wood alcohol.
  • Freeze distillation is an analogous method of purification using freezing instead of evaporation. It is not truly distillation, but a recrystallization where the product is the mother liquor, and does not produce products equivalent to distillation. This process is used in the production of ice beer and ice wine to increase ethanol and sugar content, respectively. It is also used to produce applejack. Unlike distillation, freeze distillation concentrates poisonous congeners rather than removing them; As a result, many countries prohibit such applejack as a health measure. However, reducing methanol with the absorption of 4A molecular sieve is a practical method for production.[23] Also, distillation by evaporation can separate these since they have different boiling points.

Azeotropic distillation

Main article: Azeotropic distillation
Interactions between the components of the solution create properties unique to the solution, as most processes entail nonideal mixtures, where Raoult's law does not hold. Such interactions can result in a constant-boiling azeotrope which behaves as if it were a pure compound (i.e., boils at a single temperature instead of a range). At an azeotrope, the solution contains the given component in the same proportion as the vapor, so that evaporation does not change the purity, and distillation does not effect separation. For example, ethyl alcohol and water form an azeotrope of 95.6% at 78.1 °C.
If the azeotrope is not considered sufficiently pure for use, there exist some techniques to break the azeotrope to give a pure distillate. This set of techniques are known as azeotropic distillation. Some techniques achieve this by "jumping" over the azeotropic composition (by adding an additional component to create a new azeotrope, or by varying the pressure). Others work by chemically or physically removing or sequestering the impurity. For example, to purify ethanol beyond 95%, a drying agent or a (desiccant such as potassium carbonate) can be added to convert the soluble water into insoluble water of crystallization. Molecular sieves are often used for this purpose as well.
Immiscible liquids, such as water and toluene, easily form azeotropes. Commonly, these azeotropes are referred to as a low boiling azeotrope because the boiling point of the azeotrope is lower than the boiling point of either pure component. The temperature and composition of the azeotrope is easily predicted from the vapor pressure of the pure components, without use of Raoult's law. The azeotrope is easily broken in a distillation set-up by using a liquid–liquid separator (a decanter) to separate the two liquid layers that are condensed overhead. Only one of the two liquid layers is refluxed to the distillation set-up.
High boiling azeotropes, such as a 20 weight percent mixture of hydrochloric acid in water, also exist. As implied by the name, the boiling point of the azeotrope is greater than the boiling point of either pure component.
To break azeotropic distillations and cross distillation boundaries, such as in the DeRosier Problem, it is necessary to increase the composition of the light key in the distillate.

Breaking an azeotrope with unidirectional pressure manipulation

The boiling points of components in an azeotrope overlap to form a band. By exposing an azeotrope to a vacuum or positive pressure, it's possible to bias the boiling point of one component away from the other by exploiting the differing vapour pressure curves of each; the curves may overlap at the azeotropic point, but are unlikely to be remain identical further along the pressure axis either side of the azeotropic point. When the bias is great enough, the two boiling points no longer overlap and so the azeotropic band disappears.
This method can remove the need to add other chemicals to a distillation, but it has two potential drawbacks.
Under negative pressure, power for a vacuum source is needed and the reduced boiling points of the distillates requires that the condenser be run cooler to prevent distillate vapours being lost to the vacuum source. Increased cooling demands will often require additional energy and possibly new equipment or a change of coolant.
Alternatively, if positive pressures are required, standard glassware can not be used, energy must be used for pressurization and there is a higher chance of side reactions occurring in the distillation, such as decomposition, due to the higher temperatures required to effect boiling.
A unidirectional distillation will rely on a pressure change in one direction, either positive or negative.

Pressure-swing distillation

Further information: Pressure-Swing Distillation (section on the main Azeotrope page)
Pressure-swing distillation is essentially the same as the unidirectional distillation used to break azeotropic mixtures, but here both positive and negative pressures may be employed.
This improves the selectivity of the distillation and allows a chemist to optimize distillation by avoiding extremes of pressure and temperature that waste energy. This is particularly important in commercial applications.
One example of the application of pressure-swing distillation is during the industrial purification of ethyl acetate after its catalytic synthesis from ethanol.

Industrial distillation

Typical industrial distillation towers
Main article: Continuous distillation
Large scale industrial distillation applications include both batch and continuous fractional, vacuum, azeotropic, extractive, and steam distillation. The most widely used industrial applications of continuous, steady-state fractional distillation are in petroleum refineries, petrochemical and chemical plants and natural gas processing plants.
To control and optimize such industrial distillation, a standardized laboratory method, ASTM D86, is established. This test method extends to the atmospheric distillation of petroleum products using a laboratory batch distillation unit to quantitatively determine the boiling range characteristics of petroleum products.
Automatic Distillation Unit for the determination of the boiling range of petroleum products at atmospheric pressure
Industrial distillation[15][24] is typically performed in large, vertical cylindrical columns known as distillation towers or distillation columns with diameters ranging from about 65 centimeters to 16 meters and heights ranging from about 6 meters to 90 meters or more. When the process feed has a diverse composition, as in distilling crude oil, liquid outlets at intervals up the column allow for the withdrawal of different fractions or products having different boiling points or boiling ranges. The "lightest" products (those with the lowest boiling point) exit from the top of the columns and the "heaviest" products (those with the highest boiling point) exit from the bottom of the column and are often called the bottoms.
Diagram of a typical industrial distillation tower
Industrial towers use reflux to achieve a more complete separation of products. Reflux refers to the portion of the condensed overhead liquid product from a distillation or fractionation tower that is returned to the upper part of the tower as shown in the schematic diagram of a typical, large-scale industrial distillation tower. Inside the tower, the downflowing reflux liquid provides cooling and condensation of the upflowing vapors thereby increasing the efficiency of the distillation tower. The more reflux that is provided for a given number of theoretical plates, the better the tower's separation of lower boiling materials from higher boiling materials. Alternatively, the more reflux that is provided for a given desired separation, the fewer the number of theoretical plates required. Chemical engineers must choose what combination of reflux rate and number of plates is both economically and physically feasible for the products purified in the distillation column.
Such industrial fractionating towers are also used in cryogenic air separation, producing liquid oxygen, liquid nitrogen, and high purity argon. Distillation of chlorosilanes also enables the production of high-purity silicon for use as a semiconductor.
Section of an industrial distillation tower showing detail of trays with bubble caps
Design and operation of a distillation tower depends on the feed and desired products. Given a simple, binary component feed, analytical methods such as the McCabe–Thiele method[15][25] or the Fenske equation[15] can be used. For a multi-component feed, simulation models are used both for design and operation. Moreover, the efficiencies of the vapor–liquid contact devices (referred to as "plates" or "trays") used in distillation towers are typically lower than that of a theoretical 100% efficient equilibrium stage. Hence, a distillation tower needs more trays than the number of theoretical vapor–liquid equilibrium stages. A variety of models have been postulated to estimate tray efficiencies.
In modern industrial uses, a packing material is used in the column instead of trays when low pressure drops across the column are required. Other factors that favor packing are: vacuum systems, smaller diameter columns, corrosive systems, systems prone to foaming, systems requiring low liquid holdup, and batch distillation. Conversely, factors that favor plate columns are: presence of solids in feed, high liquid rates, large column diameters, complex columns, columns with wide feed composition variation, columns with a chemical reaction, absorption columns, columns limited by foundation weight tolerance, low liquid rate, large turn-down ratio and those processes subject to process surges.
Large-scale, industrial vacuum distillation column[26]
This packing material can either be random dumped packing (1–3" wide) such as Raschig rings or structured sheet metal. Liquids tend to wet the surface of the packing and the vapors pass across this wetted surface, where mass transfer takes place. Unlike conventional tray distillation in which every tray represents a separate point of vapor–liquid equilibrium, the vapor–liquid equilibrium curve in a packed column is continuous. However, when modeling packed columns, it is useful to compute a number of "theoretical stages" to denote the separation efficiency of the packed column with respect to more traditional trays. Differently shaped packings have different surface areas and void space between packings. Both of these factors affect packing performance.
Another factor in addition to the packing shape and surface area that affects the performance of random or structured packing is the liquid and vapor distribution entering the packed bed. The number of theoretical stages required to make a given separation is calculated using a specific vapor to liquid ratio. If the liquid and vapor are not evenly distributed across the superficial tower area as it enters the packed bed, the liquid to vapor ratio will not be correct in the packed bed and the required separation will not be achieved. The packing will appear to not be working properly. The height equivalent to a theoretical plate (HETP) will be greater than expected. The problem is not the packing itself but the mal-distribution of the fluids entering the packed bed. Liquid mal-distribution is more frequently the problem than vapor. The design of the liquid distributors used to introduce the feed and reflux to a packed bed is critical to making the packing perform to it maximum efficiency. Methods of evaluating the effectiveness of a liquid distributor to evenly distribute the liquid entering a packed bed can be found in references.[27][28] Considerable work as been done on this topic by Fractionation Research, Inc. (commonly known as FRI).[29]

Multi-effect distillation

The goal of multi-effect distillation is to increase the energy efficiency of the process, for use in desalination, or in some cases one stage in the production of ultrapure water. The number of effects is inversely proportional to the kW·h/m3 of water recovered figure, and refers to the volume of water recovered per unit of energy compared with single-effect distillation. One effect is roughly 636 kW·h/m3.
  • Multi-stage flash distillation Can achieve more than 20 effects with thermal energy input, as mentioned in the article.
  • Vapor compression evaporation Commercial large-scale units can achieve around 72 effects with electrical energy input, according to manufacturers.
There are many other types of multi-effect distillation processes, including one referred to as simply multi-effect distillation (MED), in which multiple chambers, with intervening heat exchangers, are employed.

Distillation in food processing

Distilled beverages

Main article: Distilled beverage
Carbohydrate-containing plant materials are allowed to ferment, producing a dilute solution of ethanol in the process. Spirits such as whiskey and rum are prepared by distilling these dilute solutions of ethanol. Components other than ethanol, including water, esters, and other alcohols, are collected in the condensate, which account for the flavor of the beverage. Some of these beverages are then stored in barrels or other containers to acquire more flavor compounds and characteristic flavors.

Gallery

Retort-in-operation-early-chemistry.PNG Chemistry in its beginnings used retorts as laboratory equipment exclusively for distillation processes.
Distillation of dry and oxygen-free toluene.jpg A simple set-up to distill dry and oxygen-free toluene.
Vacuum Column.png Diagram of an industrial-scale vacuum distillation column as commonly used in oil refineries
Rotavapor.jpg A rotary evaporator is able to distill solvents more quickly at lower temperatures through the use of a vacuum.
Semi-microscale distillation.jpg Distillation using semi-microscale apparatus. The jointless design eliminates the need to fit pieces together. The pear-shaped flask allows the last drop of residue to be removed, compared with a similarly-sized round-bottom flask The small holdup volume prevents losses. A pig is used to channel the various distillates into three receiving flasks. If necessary the distillation can be carried out under vacuum using the vacuum adapter at the pig.